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Many large-scale disasters have a strong human component. They cannot be solved by 
technical approaches alone, but require an understanding of the collective social 
dynamics. This is maybe most obvious for financial crises, famines and other shortages 
of resources, epidemic spreading of diseases, wars and international terrorism, 
revolutions, or the collapse of trust and cooperation in societies. This contribution 
presents a summary of how complexity contributes to the emergence of systemic risks in 
socio-economic systems. It is highlighted that large-scale disasters are mostly based on 
cascading effects, which are due to non-linear and/or network interactions. Different 
classes of spreading phenomena are distinguished and illustrated by examples, 
including the financial market instability. Sources and drivers of systemic risks in socio-
economic systems are analysed, and related governance issues are identified. Typical 
misunderstandings regarding the behaviour and functioning of socio-economic systems 
are addressed, and some current threats for the stability of social and economic systems 
are pointed out. It is shown that linear, experience-based, or intuitive approaches often 
fail to provide a suitable picture of the functioning of social and economic systems. This 
leads to the illusion of control and a dangerous logic of failure, which can lead to 
paradoxical system behaviours, unwanted side effects, and sudden regime shifts. The 
application of complex systems methods, however, allows one to anticipate, avoid, or 
mitigate systemic risks and certain disasters resulting from them. It even enables one to 
use the self-organising, adaptive nature of socio-economic systems to reach favourable 
system behaviours, which are robust to external perturbations and adaptive to changing 
conditions. 
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I. Introduction 
 
When studying systemic risks, i.e. risks that can trigger unexpected large-scale changes of a 
system or imply uncontrollable large-scale threats to it, scientific research has often focussed on 
natural disasters such as earthquakes, tsunamis, hurricanes, volcanic eruptions, or on failures of 
engineered systems such as blackouts of electric power grids or nuclear accidents (as in 
Chernobyl). 
 
However, many major disasters affecting human societies relate to social problems [1–4]: This 
includes famines and other shortages of resources, wars, climate change, and epidemics, some 
of which are related to population density and population growth. Financial instabilities and 
economic crises are further examples of systemic risks. 
 
Let us illustrate these risks with some numbers: World War I resulted in more than 15,000,000 
victims, and World War II saw 60,000,000 fatalities. The latter generated costs of 1,000 billion 
1944 US$ and destroyed 1710 cities, 70,000 villages, 31,850 industrial establishments, 40,000 
miles of railroad, 40,000 hospitals, and 84,000 schools. Moreover, the world has seen many wars 
ever since. The current financial and economic crises triggered an estimated loss of 4-20 trillion 
US$. 
 
Climate change is expected to cause natural disasters, conflicts over water, food and land, 
migration, social and political instability. The related reduction of the world gross domestic 
product is expected to amount to 0.6 trillion US$ per year or more. Turning our attention to 
epidemics, the Spanish flu caused 20-40 million deaths, and SARS triggered losses of 100 billion 
US$. 
 
Considering these examples, one could in fact say “The major risks are social”, but they are still 
poorly understood. In fact, we know much more about the origin of the universe and about 
elementary particles than about the working of our socio-economic system. This situation must be 
urgently changed (see Sec. V). 
 
It is obvious that mankind must be better prepared for the crises to come. A variety of factors is 
currently driving the world out of equilibrium. The following are largely related to the contributing 
factors ‘social dynamics’ and ‘technological advances’ outlined in the report ”Emerging Risks: 
Why they occur, Why They are Unpredictable and How to Prepare for Them” [155]: Population 
growth, climate change, globalisation, changes in the composition of populations, and the 
exploitation of natural resources are just some examples. The president of New York’s Columbia 
University, Lee C. Bollinger formulated the problem as follows: ”The forces affecting societies 
around the world ... are powerful and novel. The spread of global market systems ... [is] ... 
reshaping our world… raising profound questions. These questions call for the kinds of analyses 
and understandings that academic institutions are uniquely capable of providing. Too many policy 
failures are fundamentally failures of knowledge.”[5] 
 
We certainly need to increase our capacity to gain a better understanding of socio-economic 
systems, conditions triggering instabilities, alternative system designs, ways to avoid or mitigate 
crises and the side effects of policy measures. This contribution will briefly summarise the current 
knowledge of how systemic risks emerge in society, and give a variety of relevant examples. 
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II. Socio-economic systems as complex systems 
 
An important aspect of social and economic systems is that they are complex systems (see Fig. 
1) [6–38]. Other examples of complex systems are turbulent fluids, traffic flows, large supply 
chains, or ecological systems. The commonality of complex systems is that they are 
characterised by a large number of interacting (mutually coupled) system elements (such as 
individuals, companies, countries, cars, etc.) [7, 39–49]. These interactions are usually non-linear 
(see Sec. II A). Typically, this implies a rich system behaviour [7]. In particular, the behaviour of 
such systems tends to be dynamic rather than static, and probabilistic rather than deterministic. 
As a consequence, complex systems can show surprising or even paradoxical behaviours. The 
slower-is-faster effect [50, 51], according to which delays can sometimes speed up the efficiency 
of transport systems, may serve as an example.  
 
Moreover, complex systems are often very difficult to predict and control. While we are part of 
many complex systems (such as traffic flows, groups or crowds, 2 financial markets, and other 
socio-economic systems), our perception of them is mostly oversimplified [52, 53] or biased [54–
56]. In fact, they challenge our established ways of thinking and are currently a nightmare for 
decision-makers [52]. The following subsections will explain these points in more detail. 
 
Note that there are at least three different ways in which the term ‘complexity’ is used: 
 

1. Structural complexity applies, for example, to a car, which is a complicated system made 
up of many parts. These parts, however, are constructed in a way that makes them 
behave in a deterministic and predictable way. Therefore, a car is relatively easy to 
control.  

2. Dynamic complexity may be illustrated by freeway traffic. Here, the interaction of many 
independent driver-vehicle units with a largely autonomous behaviour can cause the self-
organisation of different kinds of traffic jams, the occurrence of which is hard to predict 
(see Fig. 1).  

3. Algorithmic complexity measures how the computer resources needed to simulate or 
optimize a system scale with system size.  

 
This study focuses mainly on dynamic complexity. 
 
 

   
 
Figure 1: Freeway traffic constitutes a dynamically complex system, as it involves the interaction of many independent 
driver-vehicle units with a largely autonomous behaviour. Their interactions can lead to the self-organisation of different 
kinds of traffic jams, the occurrence of which is hard to predict (after [57]).  

 
 
 



IRGC – Emerging Risks, Helbing. October 2010. 

 
 
 

 
 
© International Risk Governance Council, 2010. Reproduction of original IRGC material is authorised provided that 
IRGC is acknowledged as the source. 

 

4 

 
A. Non-Linear Interactions and Power Laws 
 
Systems with complex system dynamics are mostly characterised by non-linear interactions 
among the elements or entities constituting the system (be it particles, objects, or individuals). 
Non-linear interactions are typical for systems in which elements mutually adapt to each other. 
That is, the elements are influenced by their environment, but at the same time, they also have an 
impact on their environment. 
 
Non-linearity means that causes and effects are not proportional to each other. A typical case is a 
system that is quite un-responsive to control attempts, or which shows sudden regime shifts when 
a “tipping point” is crossed [58–63] (see Fig. 2). Examples for this are sudden changes in public 
opinion (e.g. from smoking-tolerance to smoking bans, from a pro- to an anti-war mood, from 
strict banking secrecy to transparency, or from buying pickup trucks to buying environmentally-
friendly cars). 
 
 

 
 
 
Figure 2: Schematic illustration of one of the typical behaviours of complex systems: In regimes 1 and 2, a “cause” (such 
as a control attempt) has essentially no effect on the system, while at the “tipping point”, an abrupt (and often unexpected) 
transition to a different system behaviour occurs. A recent example is the sudden large-scale erosion of Swiss banking 
secrecy, after UBS handed over about 300 names of clients to a US authority. 

 
 
 
B. Power Laws and Heavy-Tail Distributions 
It is important to note that strong interactions among system elements often change the statistical 
distributions characterising their behaviour. Rather than normal distributions, one typically finds 
(truncated) “power laws” or, more generally, so-called heavy-tail distributions [48, 49, 58] (see 
Fig. 3 and Sec. IID). These imply that extreme events occur much more frequently than expected. 
For example, the crash of the stock market on Black Monday was a 35 sigma event (where sigma 
stands for the standard deviation of the Dow Jones Index on a logarithmic scale). Other examples 
are the size distributions of floods, storms, earth quakes, or wars [1–4]. Obviously, the occurrence 
of the respective heavy-tail distributions is highly important for the insurance business and for the 
risk assessment of financial derivatives.  
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Figure 3: When system components interact strongly, the normally distributed behaviour of separated system elements 
often becomes (approximately) power-law distributed. As a consequence, fluctuations of any size can occur in the system, 
and extreme events are much more frequent than expected. Note that power laws are typical for a system at a critical 
point, also known as a “tipping point”.  

 
 
 
C. Network Interactions and Systemic Risks through Failure Cascades 
A typical case of non-linear interactions are network interactions, which are ubiquitous in socio-
economic systems [64–79]. These imply feedback loops and vicious circles or induce (often 
undesired) side effects [32]. (For example, the introduction of cigarette taxes has promoted 
smuggling and other criminal activities.) Moreover, network interactions are often the reason for a 
cascade of failure events. Examples for this are the spread of epidemics, the failure of the 
interbank market during a financial crisis, the spreading of traffic congestion, or the blackout of an 
electrical power system (see Fig. 4). 
 
 
 

 
 
 
Figure 4: Example of a blackout of the electrical power grid in Europe (from: EU project IRRIIS. E. Liuf (2007) Critical 
Infrastructure protection, R&D view). To allow for the transfer of a ship, one power line had to be temporarily disconnected 
in Northern Germany. This triggered an overload-related cascading effect [80], during which many power lines went out of 
operation. As a consequence, there were blackouts all over Europe (see black areas). The pattern illustrates how counter-
intuitive and difficult to predict the behaviour of complex systems with network interactions can be. 
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Failure cascades (which are also called chain reactions, avalanche or domino effects) are the 
most common mechanism by which local risks can become systemic [81–84] (see Fig. 5). 
Systemic failures are usually triggered by one of the following: 
 
 

 
 
 
Figure 5: Top: Schematic illustration of a networked system which is hit by an over-critical perturbation (e.g. a natural 
disaster). The problem of feedback cycles is highlighted. They can have “autocatalytic” (escalation) effects and act like 
vicious circles. Bottom: Illustration of cascading effects in socio-economic systems, which may be triggered by the 
disruption (over-critical perturbation) of an anthropogenic system. A more detailed picture can be given for specific 
disasters. Note that the largest financial damage of most disasters is caused by such cascading effects, i.e. the systemic 
impact of an over-critical perturbation (after [85]). 
 
 

 
1. The parameters determining system stability are driven towards a so-called “critical point” 

or “tipping point”, beyond which system behaviour becomes unstable (see Sec. II A). For 
example, the destabilisation of the former German Democratic Republic (GDR) triggered 
off spontaneous demonstrations in Leipzig, Germany, in 1989, which eventually caused 
the re-unification of Germany. This “peaceful revolution” shows that systemic instability 
does not necessarily imply systemic malfunctions. It can also induce a transition to a 
better and more robust system state after a transient transformation period. Further 
examples of spontaneous transitions by systemic destabilisation are discussed in 
Sections II D, III, and IV A.  

 
2. The system is metastable (i.e. robust to small perturbations, which quickly disappear over 

time), but then an over-critical perturbation (such as a natural disaster) occurs, which 
harms the system functionality so much that this has damaging effects on other parts of 
the system [84] (see Fig. 6). 

 
3. The system is metastable, but there is a coincidence of several perturbations in the 

network nodes or links such that their interaction happens to be over-critical and triggers 
additional failures in other parts of the system [83]. In fact, disasters caused by human 
error [86, 87] are often based on a combination of several errors. In networked systems, 
such occurrences are just a matter of time. 
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Figure 6: The most efficient disaster response strategy depends on many factors such as the network type (after [84]). 
Here, we have studied six different disaster response strategies for regular grids, scale-free networks, and Erdös-Rényi 
random networks. The best strategy is a function of the resources R available for disaster response management and the 
time delay tD before practical measures are taken. Obviously, there is no single strategy that always performs well. This 
makes disaster response challenging, calling for scientific support. 

 
D. Self-Organised or Self-Induced Criticality  
A system may get into a critical state not only via external influences affecting its stability. It is 
known that some endogenous processes can automatically drive the system towards a critical 
state, where avalanche or cascading effects of arbitrary size appear (reflecting the characteristic 
heavy-tail statistics at critical points, see Sec. II B). In such cases, the occurence of extreme 
events is expected, and we speak of “self-induced” or “self-organised criticality” (SOC) [88, 89]. 
 
It is likely that bankruptcy cascades can be understood in this way. The underlying mechanism is 
that a company or bank tries to make a better offer to customers or clients than competing 
companies or banks. This forces the competitors to make better offers as well. Eventually, the 
profit margins in a free market become so small that variations in the consumption rate can drive 
some companies or banks out of business, which creates economic problems for other 
companies or banks. Considering the interconnections between different companies or banks, 
this mechanism can cause bankruptcy cascades. Eventually, the number of competitors will be 
smaller, and as a consequence, they can charge higher prices. Therefore, their profits go up, 
which encourages new competitors to enter the market. In this way, competition increases again 
and automatically drives the system back to low profits and bankruptcies. 
 
Another example concerns safety standards [86, 87]. These are usually specified in such a way 
that normal perturbations would not cause serious harm or even systemic failures. As a 
consequence, most man-made systems are constructed in a way that makes them robust to 
small and moderate perturbations (in other words: metastable). However, the requirement of cost 
efficiency exerts pressure on decision-makers to restrict safety standards to what really appears 
to be needed, and not more. Consequently, if a large-scale failure has not occurred in a long 
time, decision-makers often conclude that the existing safety standards are higher than 
necessary and that there is some potential to reduce costs by decreasing them somewhat.  
Eventually, the standards are lowered so much that, sooner or later, an over-critical perturbation 
will occur, causing a systemic failure. As a consequence, the safety-standards will be increased 
again, and the process will start from the beginning.  
 
As a third example, let us discuss man-made systems with capacity limits such as traffic or 
logistics systems. These systems are often driven towards maximum efficiency, i.e. full usage of 
their capacity. However, when reaching this point of maximum efficiency, they also reach a 
tipping point, at which the system becomes dynamically unstable [90]. This is known, for 
example, from freeway and railway traffic. As a consequence, the system suffers an unexpected 
capacity drop due to optimisation efforts, shortly after the maximum performance is reached. 
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Attempts to avoid the occurrence of congestion in urban traffic may use re-routing strategies. 
However, a closer analysis reveals that this optimisation leads once more to a sudden breakdown 
of the flow, once the maximum throughput is reached [91]. One may, therefore, conclude that 
optimising for the full usage of available system capacity implies the danger of an abrupt 
breakdown of the system performance with potentially very harmful consequences. To avoid this 
problem, one must know the capacity of the system and remain sufficiently clear of it. This can be 
done by requiring sufficient safety margins. 
 
E. Limits of Predictability, Randomness, Turbulence and Chaos 
A large number of non-linearly coupled system components can lead to complex dynamics (see 
Fig. 7). Well-known examples for this are the phenomena of turbulence [92] and chaos [42, 93], 
which make the dynamics of the system unpredictable after a certain time period. A typical 
example is weather forecasting.  
 
This large sensitivity to small perturbations is sometimes called the “butterfly effect”, suggesting 
that (in a chaotically behaving system) the flight of a butterfly could significantly change the 
system behaviour after a sufficiently long time. A further obstacle for predicting the behaviour of 
many complex systems is a probabilistic or stochastic dynamic [94, 95], i.e. the importance of 
randomness. 
 
In socio-economic systems, there is furthermore a tendency towards self-fulfilling or self-
destroying prophecy effects [96] (and it is hard to say which effect will finally dominate, see the 
current response of the population to the swine flu campaign). Stock markets show both effects: 
On the one hand, the self-fulfilling prophecy effect leads to herding behaviour, which creates 
bubbles [97]. On the other hand, the competition for the highest possible returns eventually 
destroys any predictable gains (otherwise everybody could become rich without having to work, 
thereby creating a “financial perpetuum mobile”). Altogether, this competition creates a (more or 
less) “efficient” and unpredictable stock market. A generalisation of this principle is known as 
Goodhart’s law. 
 
 

 
 
Figure 7: Illustration of various cases of non-linear dynamics that can occur in complex systems (from [98], p. 504; 
reproduced with the kind permission of J. D. Murray). Deterministic chaos and turbulence constitute further and even 
more complicated cases of non-linear system dynamics. 

 
 



IRGC – Emerging Risks, Helbing. October 2010. 

 
 
 

 
 
© International Risk Governance Council, 2010. Reproduction of original IRGC material is authorised provided that 
IRGC is acknowledged as the source. 

 

9 

 
F. The Illusion of Control 
Besides the difficulties of predicting the future behaviour of complex systems, there are other 
effects which make them difficult to control: 
 

 
 
Figure 8: When a complex system is changed (e.g. by external control attempts), its system parameters, stability, and 
dynamics may be affected. This figure illustrates the occurrence of a so-called “cusp catastrophe”. It implies discontinuous 
transitions (“regime shifts”) in system dynamics. 
 

1. On the one hand, big changes may have little or no effects (see Fig. 2) and, when 
considering network interactions (see Sec. II C), even adverse effects. This reflects the 
principle of Le Chatelier, according to which a system tends to counteract external control 
attempts. 

 
2. On the other hand, if the system is close to a “critical” or “tipping point”, even small 

changes may cause a sudden “regime shift”, also known as “phase transition” or 
“catastrophe” (see Figs. 2 and Sec. 8). In other words, small changes can sometimes 
have a big impact, and often very unexpectedly so. However, there are typically some 
early warning signals for such critical transitions [99]. This includes the phenomenon of 
“slow relaxation”, which means that it takes a long time to dampen out perturbations in 
the system, i.e. to drive the system back to equilibrium.  

 
Other warning signals of potential regime shifts are “critical fluctuations”, which normally 
obey a heavy-tail distribution (see Sec. IIB). In other words, perturbations in the system 
tend to be larger than usual—a phenomenon which is also known as “flickering”. 

 
3. Control attempts may also be obstructed by “irreducible randomness”, i.e. a degree of 

uncertainty or perturbation which cannot be eliminated (see Sec. IIE). 
 

4. Delays are another typical problem that often lead to a failure of control [100]. The 
underlying reason is that delays may create unstable system behaviour (which can also 
occur when people attempt to compensate for delays through anticipation). Typical 
examples are the breakdown of traffic flows and the occurrence of stop-and go traffic, 
which result from delayed speed adjustments of drivers to variations in the vehicle 
speeds ahead.  

 
Since many control attempts these days are based on the use of statistics, and compiling 
such statistics is usually time-consuming, delays may also cause instabilities in other 
areas of society. Business cycles, for example, may result from such delays as well (or 
may at least be intensified by them). 
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5. Finally, there is the problem of “unknown unknowns” [101], i.e. hidden factors which 
influence system behaviour, but have not been noticed before. By definition, they appear 
unexpectedly. “Structural instabilities” [39] may create such effects. The appearance of a 
new species in an ecosystem is a typical example. In economics, this role is played by 
innovations or new products, which happen to change the social or economic world. Well 
known examples for this include the invention of contraceptives, computers, or mobile 
phones. 

 
G. The Logic of Failure 
As a consequence of the above, complex systems cannot be controlled in the conventional way 
(like pressing a button or steering a car). Such control attempts will usually fail, as Doerner’s book 
“The Logic of Failure” has impressively shown [52]. A typical failure scenario is as follows: A 
decision-maker tries to change the social system. It turns out that the measure taken does not 
have any effect (see Fig. 2). Therefore, he or she decides to intensify the measure. The effect 
may still not be as expected. Hence, an even more forceful control attempt is made. As a 
consequence, the system undergoes a sudden regime shift (see Figs. 2+8) and the system 
organises itself in a different way (but not necessarily in the desired way). The decision-maker 
now tries to re-gain control and counteracts the unexpected change. If attempts to stabilise the 
system are delayed, this can lead to oscillatory or chaotic system dynamics. 
 
The right approach to influencing complex systems is to support and strengthen the self-
organisation and self-control of the system by mechanism design (see Sec.IV A). This basically 
means that coordination and cooperation in a complex system will appear by themselves, if the 
interactions among the system elements are well chosen. That is, regulations should not specify 
what exactly the system elements should do, but set bounds to actions (define “rules of the 
game”), which give the system elements enough degrees of freedom to self-organise good 
solutions. If the interaction rules are suitable, such an approach will usually lead to a much more 
flexible and adaptive system behaviour. Another advantage is “systemic robustness”, i.e. the 
ability to cope with challenges from external perturbations. Note however, that everything 
depends on the interactions of the system elements. Unsuitable interactions can, for example, 
cause the system to behave in a dynamically unstable way, or to get trapped it in a suboptimal 
(“frustrated”) state. Hence, finding the right rules of interaction is a great challenge for decision-
makers, and complex systems scientists are needed to address them properly. 
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III. The example of financial market instability 
 
One example of systemic risks that deserves more attention here is financial market instability 
[102–108]. The recent financial crisis shows very clearly how cascading effects can lead to 
uncontrollable dynamics and a relatively sudden systemic crisis. What started with local problems 
concerning subprime mortgages eventually affected the mortgage companies, the home building 
industry, the financial markets, the US economy, and the world economy. This crisis has been 
explained in many ways. Widely discussed reasons include: 
 

• the deregulation of financial markets 
 
• the explosive spread of derivatives (which reached a value of 15 times the gross product 

of the world), 
 
• the apparently “riskless” securitisation of risky deals by credit default swaps, lowering 

lending standards, 
 

• the opaqueness (lack of transparency) of financial derivatives, 
 

• the failure of rating agencies due to the complexity of financial products, 
 

• bad risk models (neglecting, for example, correlations and the heavy-tail character of 
fluctuations), 

 
• calibration of risk models with historical data not reflecting the actual situation, 

 
• insufficient net assets of banks, 

 
• low interest rates to fight previous crises, 

 
• the growth of over-capacities and other developments with pro-cylical effects, 

 
• short-term incentive structures (“bonus schemes”) and “greed” of investment bankers and 

managers. 
 
Recently, the following points are increasingly paid attention to: 
 

• the possible destabilization of stock prices by “naked short-selling”, 
 

• the multiplication of fluctuations and the large market impact of hedge funds due to their 
high leverage (i.e. due to their speculation with huge amounts of lent money), 

 
• mutually agreed trading strategies (e.g. joint bets against the Euro), 

 
• high-frequency trading, 

 
• manipulations of and by ratings of stocks and financial derivatives, 

 

• an non-transparent and unregulated market for credit default swaps and the misuse of 
this financial instrument, 
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• a lack of separation between classical banking (giving loans to people and companies) 
and investment banking (“gambling” with stocks and financial derivatives). 

 
Less debated, but not less relevant problems are [109–111]: 
 

• The complexity of the financial system is greater than what is knowable. For example, 
many portfolios appear to contain too many different assets to support a reliable 
optimisation with the amount of data available [112]. 

 
• In the “arms race” between banks (and other agents) with the regulators, regulators are 

sometimes in the weaker position. Therefore, financial market instability may result from 
the fact that instability is beneficial for some interest groups: An unstable market re-
distributes resources and allows some people to become very rich in a short time. 
Instability implies opportunities for good investments, even when GDP grows slowly.  

 
• This financial architecture has created a complex system, with hard-to-predict and hard-

to-control dynamics. Financial products (“derivatives”) were constructed in a multi-level 
way, very much like a house of cards. 

 
• The world-wide network interdependencies of all major banks spread local risks over the 

entire system to an extent that produced a systemic risk. It created a “global village” 
without any “firewalls” (security breaks). 

 
• Delays in the adaptation of some markets build up disequilibria in the system with the 

potential of earthquake-like stress reliefs. As examples for this, one may take historical 
crashes in currency markets or recent drops in the values of certain AAA-rated stocks. 

 

• The financial and economic systems are organised in a way that allows for the 
occurrence of strong correlations. For example, when the strategies of companies all 
over the world become more and more similar (due to “group think” [113] or asking the 
same consultancy companies), the result is a lack of variety (lack of heterogeneity) in the 
system. This implies that the number of defaulting companies is either negligible, or many 
companies fail at the same time.  

 

• An important factor producing herding effects [114, 115] and bubbles is the continuous 
information feedback regarding the investment decisions of others [116]. In this 
connection, it is important to underline that repeated interactions between decision-
makers support consensus, but create over-confidence (i.e. a false feeling of safety, 
despite misjudgements of reality). Therefore, this undermines the “wisdom of crowds” 
[117, 118]. This problem may be further intensified by the public media which, in the 
worst case, may even create mass hysteria. 

 
• The price formation mechanism mixes material values and psychology in a single, one-

dimensional quantity, the price. Therefore, prices are sensitive to factors such as trust, 
risk aversion, greed, and herding effects (imitation of the behaviour of others) [54–56, 
119]. 

 
• The stability of single banks does not mean that the banking system cannot enter a state 

of systemic instability. (Monetary value is a matter of trust, and therefore a single event 
such as the failure of Lehmann Brothers was enough to cause banks to cease lending 
money to each other. This implied a liquidity crisis so big that it would have triggered the 
failure of the world financial system, if central banks had not quickly provided huge 
amounts of liquidity.) 
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• Lack of trust also reduces lending of cheap money to troubled companies, which may 

drive them into bankruptcy, thereby increasing a bank’s problems. 
 

• More generally, the economic system seems to have a tendency towards self-organised 
critical behaviour (see Sec. II D).  

 
Many of the above factors have contributed to strong non-linear couplings in the system. 
Furthermore, strong network interdependencies have been created through the interbank markets 
and complex financial derivatives. These features are already expected to imply cascade-like 
effects and heavy-tail statistics (see Sec. II B). This tendency is likely to be further amplified by 
anticipation attempts in fluctuating markets. However, even more dangerous than the occurrence 
of fluctuations in the markets is the occurrence of strong correlations. These can be promoted by 
economic cycles, herding effects, and the coupling of policies or regulation attempts to global risk 
indicators. 
 
The worldwide crisis in the automobile sector in 2009 and the quant meltdown in August 2007 are 
good examples of the occurrence of strong correlations. The latter may be understood as follows 
[120]: Returns of hedge funds largely depend on their leverage. Therefore, there is an 
“evolutionary pressure” towards high leverage, which can increase volatility. In case of huge price 
jumps, however, banks tend to demand their loans back. This decreases the leverage of the 
affected hedge funds and thereby their chances to perform well in the future. Hence, large 
system-wide leverage levels are prerequisites for collapses, and crises can emerge virtually “out 
of nothing”, just through fluctuations. This example illustrates well how unsuitable risk-averse 
policies can create pro-cyclical effects, through which banks may harm their own interests. 
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IV. Managing complexity 
 
Having discussed the particular challenges of complex systems, one may be left with the 
impression that such systems are just too difficult for us to handle. However, over the past few 
decades, a variety of scientific techniques have been developed to address these challenges. 
These include: 
 
• large-scale data mining,  
 
• network analysis, 
 
• systems dynamics, 
 
• scenario modelling, 
 
• sensitivity analysis, 
 
• non-equilibrium statistical physics, 
 
• non-linear dynamics and chaos theory, 
• systems theory and cybernetics, 
 
• catastrophe theory, 
 
• the statistics of extreme events, 
 
• the theory of critical phenomena and, maybe most prominently these days, 
 
• agent-based modelling [129–133]. 
 
The methods developed by these fields allow us to better assess the sensitivity or robustness of 
systems and their dynamics, as will be briefly discussed in the following sections. They have also 
revealed that complex systems are not our “enemies”. In fact, they possess a number of 
favourable properties, which can be used to our benefit. 
 
A. How to Profit from Complex Systems 
Understanding complex systems facilitates the utilisation of their interesting properties, which, 
however, requires one to work with the system rather than against it [121–128]. For example, 
complex systems tend to show emergent (collective) properties, i.e. properties that the single 
system components do not have. This is, for example, relevant for the possibility of collective 
intelligence [134–136]. One may also benefit from the fact that complex systems tend to self-
organise in a way, which is adaptive to the environment and often robust and resource-efficient 
as well. This approach has, for example, been successfully applied to develop improved design 
principles for pedestrian facilities and other systems.  
 
Technical control approaches based on self-organisation principles are becoming increasingly 
available. While previous traffic control on highways and in cities was based on a centralised 
optimisation by supercomputers with expensive measurement and control infrastructures, 
approaches currently being developed are based on decentralised coordination strategies (such 
as driver assistant systems or traffic lights that are flexibly controlled by local traffic flows).  
 
Centralised structures can allow for quick information exchange among remote parts of a system, 
but they become unstable beyond a certain critical size (as the collapse of political states and 
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many unsuccessful mergers of companies show). In comparison, decentralised approaches are 
particularly suited to achieving a flexible adjustment to local conditions and local coordination 
[137]. 
 
Some decentralised concepts for real-time control already exceed the performance of centralised 
ones, particularly in complex, difficult to control, fluctuating environments, which require a quick 
and flexible response to the actual situation [138] (see Fig. 9). In fact, in a strongly varying world, 
strict stability and control are no longer possible or are excessively expensive (as public spending 
deficits show). Therefore, a paradigm shift towards more flexible, agile, adaptive systems is 
needed, possible, and overdue. The best solutions are probably based on suitable combinations 
of centralised and decentralised approaches. 

 
 
Figure 9: One advantage of centralised control is quick large-scale coordination. However, disadvantages result from the 
vulnerability of the network, a tendency towards information overload, the risk of selecting the wrong control parameters, 
and delays in adaptive feedback control. Because of greater flexibility to local conditions and greater robustness to 
perturbations, decentralised control approaches can perform better in complex systems with heterogeneous elements, 
large fluctuations, and short-term predictability (after [139]; reproduction with the kind permission of Katja Windt). 

 
In social systems, the principle of self-organisation, which is also known as the principle of the 
“invisible hand”, is ubiquitous. However, self-organisation does not automatically lead to optimal 
results, and it may fail under extreme conditions (as is known, for example, from financial and 
traffic systems as well as dense pedestrian crowds).  
 
A particularly important example of self-control is the establishment of social norms, which are 
like social forces guiding the behaviour of people. In this way, social order can be created and 
maintained even without centralised regulations such as enforced laws. Nevertheless, one must 
be aware that the principles on which social cooperation and norms are based (for example, 
repeated interaction, trust and reputation, or altruistic sanctioning of deviant behaviour) are 
fragile. Simple computer simulations suggest, for example, that a change from repeated local 
interactions (between family members, friends, colleagues, and neighbours) to non-recurring 
interactions with changing partners from all over the world may cause a breakdown of human 
cooperation [140]. Therefore, naive globalisation could potentially destabilise our social systems 
[141–143] (see Fig. 10), which largely build on norms and social cooperation. (Remember, for 
example, that the breakdown of the interbank market, which almost caused a collapse of the 
world financial system, was due to a breakdown of the network of trust.)  
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Figure 10: Establishment of cooperation in a world with local interactions and local mobility (left) in comparison with the 
breakdown of cooperation in a world with global interactions and global mobility (right) (blue = cooperators, red = 
defectors/cheaters/free-riders) (after [140]). Note that the loss of solidarity results from a lack of neighbourhood 
interactions, not from larger mobility. 

 
B. Reducing Network Vulnerability 
In Sec. II C, we have seen that systemic risks are mostly based on cascade spreading effects in 
networks. However, the vulnerability of networks to such spreading events can be reduced. The 
following measures are often quite effective: 

 
 
Figure 11: A networked system should be constructed in a way that allows its quick decomposition or de-
compartmentalisation into weakly coupled (or, if necessary, even uncoupled) sub-networks. In such a way, failure 
cascades all over the system (or large parts of it) can be avoided, and most parts of it can be protected from damage. 

 

• Network structure can often been improved by redundancy, i.e. the provision of 
alternatives, so that an over-critical perturbation only occurs if several nodes fail or 
several links break simultaneously. 

 
• However, too much interconnectedness may be harmful, as this provides the 

“infrastructure” for the system-wide spreading of an unexpected problem. Therefore, it 
makes sense to limit the degree of connectedness and the size of networks (in order to 
avoid a “too big to fail” problem). 

 
• Alternatively, one can introduce “firewalls”: Having several networks, each of them 

characterised by strong links, while the connections between the networks are weak, 
would allow a decoupling of the so-called supernetwork into several subnetworks (see 
Fig. 11). This principle of de-compartmentalisation allows one to prevent the spreading of 
a problem to the whole system, if the disconnection strategy is well chosen. The principle 
of firewalls to protect computer systems from malicious intrusion or the principle of 
electrical fuses to protect an electrical network from overload could certainly be 
transferred to other networked systems such as the financial system. 

 
• For similar reasons, a reasonable degree of heterogeneity (variety) among the nodes 

and/or links of a network (in terms of design principles and operation strategies) will 
normally increase its robustness. 
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• When fighting failure cascades in networks, a quick response to over-critical 

perturbations is absolutely critical. If the time delay of disaster response management is 
small, its effectiveness depends in a complicated way on the network structure, the 
amount of resources, and the strategy of distributing them in the network (see Fig. 6). In 
case of significant delays, there is little chance of mitigating cascade spreading, even 
when large amounts of resources are invested. 

 
• A moderate level of fluctuation may be useful to destroy potentially harmful correlations 

(such as financial bubbles) in the system. Such fluctuations could be created by central 
banks (for the purpose of “bubble control”) or by other regulators, depending on the 
system. Note, however, that a large degree of fluctuation can cause over-critical 
perturbations or coincidences of perturbations. 

 

• An unhealthy degree of volatility can be lowered by introducing conservation laws and/or 
frictional effects in the system. This is expected to dampen fluctuations and, thereby, to 
reduce the likelihood of events that may trigger systemic risks.  

 
Rather than applying these concepts permanently, it can make sense to use them adaptively, 
depending on the state of the system. When designing networked systems according to the 
above principles, one can certainly profit and learn from the experience of physicists and 
engineers with other systems. 
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V. Summary, discussion and outlook 
 
In this contribution, we have summarised the properties of complex systems and identified factors 
that contribute to creating fertile ground for the emergence of systemic risks in socio-economic 
systems. Complex systems cannot be easily controlled. Rather, they tend to follow self-organised 
eigendynamics, and conventional control attempts often have counter-intuitive and unintended 
effects. 
 
As the example of ecosystems shows, a networked system can have an astonishing degree of 
robustness without any central control. Robustness just requires the right interaction rules, which 
may be implemented, for example, by social norms, laws, technological measures etc., 
depending on the system. Properly chosen rules will lead to  self-regulation or self-control of the 
system, but improper specifications can lead to low performance or systemic instability. For 
example, if the failure rate of system elements is reduced, this may lead to larger systemic 
failures later on. Moreover, it is probably good if the system is regularly exposed to stress, as this 
is expected to strengthen its immunity to perturbations. 
 
Emphasis was put on the fact that, in any larger networked system, it is essential to have 
“firewalls” (security breaks), which facilitate its quick decomposition or de-compartmentalisation 
into disconnected or weakly connected subnetworks before a failure cascade has percolated 
through the whole system or large parts of it. 
 
Among the success stories of complex systems research, one may mention the Nobel prizes of 
Ilya Prigogine, Thomas Schelling, and Paul Krugmann. Some examples for application areas of 
complexity science are [144–148] 
 
• the organisation of the internet, 
 
• modern epidemiology, 
 
• the prevention of crowd stampedes, 
 
• innovative solutions to improve traffic flow, 
 
• understanding the causes and impacts of environmental or climate change, 
 
• enhancement of the reliability of energy supply, 
 
• modern disaster response management, 
 
• prediction markets and other methods using the wisdom of crowds. 
 
However, many socio-economic crises still occur because the system dynamics are not well 
enough understood, leading to serious management mistakes. In order to support decision-
makers, scientists need to be put in a better position to address the increasing number of socio-
economic problems. These mainly result from the fact that social and economic systems are 
rapidly changing, i.e. in a transformation process rather than in equilibrium. 
 
We must close the gap between existing socio-economic problems and solutions, and create 
conditions allowing us to come up with solutions before a problem occurs. This requires building 
up greater research capacities (a “socio-economic knowledge accelerator”). It will also be 
necessary to establish a new study direction (“integrative systems design”) to provide decision-
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makers with solid knowledge regarding the behaviour of complex systems, how to manage 
complexity in politics and economics, and how to cope with crises.  
 
Finally, scientists need to have access to better and more detailed data. Special super-computing 
centres (as for climate research) would allow scientists to simulate model societies and study the 
impact of policy measures before their implementation. They would also support the development 
of contingency plans and the investigation of alternative means of organisation (“plan B”). Such 
centres will require a multi-disciplinary collaboration across the various relevant research areas, 
ranging from the socio-economic, to the natural, to the engineering sciences. For this, one needs 
to overcome the particular challenges of multidisciplinary research regarding organisation, 
funding, and publication. 
 
Considering that we know more about the origin of the universe than about the conditions for a 
stable society, a prospering economy, and enduring peace, we need nothing less than an “Apollo 
project for the socioeconomic sciences”. There is no time to lose, since there are already signs of 
critical fluctuations indicating possible regime shifts [149–154]: The recent riots in Greece, for 
example, are speaking a clear language. 
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