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Defining Resilience  
Resilience has emerged in the last decade as a concept for better understanding the performance of 
infrastructures, especially their behaviour during and after the occurrence of disturbances, e.g. 
natural hazards or technical failures. Recently, resilience has grown as a proactive approach to 
enhance the ability of infrastructures to prevent damage before disturbance events, mitigate losses 
during the events and improve the recovery capability after the events, beyond the concept of pure 
prevention and hardening (Woods, Four concepts for resilience and the implications for the future of 
resilience engineering, 2015). 

The concept of resilience is still evolving and has been developing in various fields (Hosseini, Barker, 
& Ramirez-Marquez, 2016). The first definition described resilience as “a measure of the persistence 
of systems and of their ability to absorb change and disturbance and still maintain the same 
relationships between populations or state variables” (Holling, 1973). Several domain-specific 
resilience definitions have been proposed (Ouyang, Dueñas-Osorio, & Min, A three-stage resilience 
analysis framework for urban infrastructure systems, 2012) (Adger, 2000) (Pant, Barker, & Zobel, 
2014) (Francis & Bekera, 2014). Further developments of this concept should include endogenous 
and exogenous events and recovery efforts. To include these factors, resilience is broadly defined as 
“the ability of a system to resist the effects of disruptive forces and to reduce performance 
deviations” (Nan, Sansavini, & Kröger, 2016).  

Assessing and engineering systems resilience is emerging as a fundamental concern in risk research 
(Woods & Hollnagel, Resilience Engineering: Concepts and Precepts, 2006) (Haimes, 2009) 
(McCarthy, et al., 2007) (McDaniels, Chang, Cole, Mikawoz, & Longstaff, 2008). Resilience adds a 
dynamical and proactive perspective into risk governance by focusing (i) on the evolution of system 
performance during undesired system conditions, and (ii) on surprises (“known unknowns” or 
“unknown unknowns”), i.e. disruptive events and operating regimes which were not considered likely 
design conditions. Resilience encompasses the concept of vulnerability (Johansson & Hassel, 2010) 
(Kröger & Zio, 2011) as a strategy to strengthen the system response and foster graceful degradation 

                                                           
i This paper is part of the IRGC Resource Guide on Resilience, available at: https://www.irgc.org/risk-
governance/resilience/. Please cite like a book chapter including the following information: IRGC (2016). 
Resource Guide on Resilience. Lausanne: EPFL International Risk Governance Center. v29-07-2016 
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against a wide spectrum of known and unknown hazards. Moreover, it expands vulnerability in the 
direction of system reaction/adaptation and capability of recovering an adequate level of 
performance following the performance transient. 

 

Need for Resilience in Critical Interdependent Infrastructures  
Resilience calls for developing a strategy rather than performing an assessment. If on the one hand it 
is important to quantify and measure resilience in the context of risk management, it is even more 
important that the quantification effort enables the engineering of resilience into critical 
infrastructures. Especially for emerging, not-well-understood hazards and “surprises” (Paté‐Cornell, 
2012), resilience integrates very smoothly into risk management, and expediently focuses the 
perspective on the ex-ante system design process. Following this perspective, risk thinking becomes 
increasingly embedded into the system design process. 

The application of resilience-building strategies look particularly promising for critical interdependent 
infrastructures, also called systems-of-systems, because of its dynamical perspective in which the 
system responds to the shock event, adapting and self-healing, and eventually recovers to a suitable 
level of performance. Such perspective well suits the characteristics of these complex systems, i.e. i) 
the coexistence of multiple time scales, from infrastructure evolution to real-time contingencies; ii) 
multiple levels of interdependencies and lack of fixed boundaries, i.e. they are made of multiple 
layers (management, information & control, energy, physical infrastructure); iii) broad spectrum of 
hazards and threats; iv) different types of physical flows, i.e. mass, information, power, vehicles; v) 
presence of organizational and human factors, which play a major role in severe accidents, 
highlighting the importance of assessing the performance of the social system together with the 
technical systems. 

As a key system of interdependent infrastructures, the energy infrastructure is well suited to 
resilience engineering. In the context of security of supply and security of the operations, resilience 
encompasses the concept of flexibility in energy systems. Flexibility providers, i.e. hydro and gas-fired 
plants, cross-border exchanges, storage technologies, demand management, decentralized 
generation, ensure enough coping capacity, redundancy and diversity during supply shortages, 
uncertain fluctuating operating conditions and unforeseen contingencies (Roege, Collier, Mancillas, 
McDonagh, & Linkov, 2014) (Skea, et al., 2011). 

 

Building Resilience in Critical Infrastructures 
In the context of critical infrastructures, resilience can be developed by focusing on the different 
phases of the transient performance following a disturbance (also called resilience curve), and 
devising strategies and improvements which strengthen the system response.  

Focusing mainly on the technical aspects, these strategies can be summarized as: 

- Planning ahead during the design phase: robust or stochastic optimization against 
uncertain future scenarios, i.e. attacks or uncertain future demand in the energy 
infrastructure, can be used in the system planning or expansion process; uncertain 
scenarios provide the basis to design resilient systems. 
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- Self-healing, adaptation and control, i.e. graceful degradation: the system cannot be 
design with respect to every uncertain scenario, therefore a resilient design should 
consider how to prevent the disturbance from spreading across the whole system, 
creating systemic contagion and system-wide collapse. In this respect, cascading failures 
analysis, and engineering network systems to be robust against outbreak of outages and 
propagations of cascading failures across their elements are key strategies. Control 
engineering can provide strategies to create robust feedback loops capable of enabling 
infrastructures to absorb shocks and avoid instabilities. Designing structures and 
topologies which prevent failure propagation, and devising flexible topologies by 
switching elements which allow graceful degradation of system performances after 
disruptions are also valuable resilience-enhancing techniques.     

- Recovering quickly from the minimum performance level: robust or stochastic 
optimization of the recovery and restoration process in the face of uncertainties in the 
repair process or in the disruption scenarios. 

- Effective system restoration: through the combination of restoration strategies, e.g. 
repairing the failed elements and building new elements, the infrastructure can achieve a 
higher performance with respect to the pre-disruption conditions. 

- Exploiting interdependencies among infrastructures: interdependencies and couplings in 
systems operations can foster the propagations of failure across coupled system; on the 
other hands, interdependencies might also provide additional flexibility in disrupted 
conditions and additional resources that can facilitate achieving stable conditions of the 
coupled system. 

 

Quantifying Resilience 
Resilience is defined and measured based on system performance. The selection of the appropriate 
MOP depends on the specific service provided by the system under analysis. 

The resilience definition can be further interpreted as the ability of the system to withstand a change 
or a disruptive event by reducing the initial negative impacts (absorptive capability), by adapting 
itself to them (adaptive capability) and by recovering from them (restorative capability). Enhancing 
any of these features will enhance system resilience. It is important to understand and quantify these 
capabilities that contribute to the characterization of system resilience (Fiksel, 2003). Absorptive 
capability refers to an endogenous ability of the system to reduce the negative impacts caused by 
disruptive events and minimize consequences. In order to quantify this capability, robustness can be 
used, which is defined as the strength of the system to resist disruption. This capability can be 
enhanced by improving system redundancy, which provides an alternative way for the system to 
operate. Adaptive capability refers to an endogenous ability of the system to adapt to disruptive 
events through self-organization in order to minimize consequences. Emergency systems can be used 
to enhance adaptive capability. Restorative capability refers to an ability of the system to be 
repaired. The effects of adaptive and restorative capacities overlap and therefore, their combined 
effects on the system performance are quantified by rapidity and performance loss. 
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Figure 1: The “resilience curve”, i.e. the performance transient after disturbance, and its phases. 

  

Resilience can be quantified through computational experiments in which disruptions are triggered, 
the system performance is analyzed (Figure 1), and integrated resilience metrics are computed (Nan, 
Sansavini, & Kröger, 2016). By repeating this process, different system design solutions can be ranked 
with respect to resilience. By the same token, resilience against various disruptions can be assessed, 
and resilience-improving strategies compared.  

During the last decade, researchers have proposed different methods for quantifying resilience. In 
2003, the first conceptual framework was proposed to measure the seismic resilience of a 
community (Bruneau, et al., 2003), by introducing the concept of Resilience Loss, later also referred 
to as “resilience triangle”.  

In recent years, the importance of improving the resilience of interdependent critical infrastructures 
has been recognised, and research works have developed. Historically, knowledge-based approaches 
have been applied to improve the understanding of infrastructures resilience (McDaniels, Chang, 
Cole, Mikawoz, & Longstaff, 2008). Lately, model-based approaches have been developed to 
overcome the limitations of data-driven approaches, such as System Dynamics (Bueno, 2012), 
Complex Network Theory (Gao, Barzel, & Barabási, 2016), and hybrid approaches (Nan, Sansavini, & 
Kröger, 2016). 

Approaches to quantify system resilience should be able to  

- Capture the complex behaviour of interdependent infrastructures 
- Cover all phases of the transient performance following the disruption, and to include all 

resilience capabilities 
- Clarify the overlap with other concepts such as robustness, vulnerability and fragility. 

Resilience quantification of interdependent infrastructures is still at an early stage. Currently, a 
comprehensive method aiming at improving our understanding of the system resilience and at 
analysing the resilience by performing in-depth experiments is still missing. 
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