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While advocates for resilient infrastructure systems typically emphasize improving risk analysis and 
management (PPD-21, 2013; NRC, 2012; Hubbard, 2009), the necessity that risk places upon 
knowledge of the hazard means it is unequipped to deal with the emergent behavior of surprise 
(Anderson, 1999; Rinaldi, 2001; Mitleton-Kelly, 2003; Bekebrede, 2010; Hollnagel et al., 2011; Seager 
et al., 2011; Clark et al., 2016). Recent policy shifts have emphasized the development of resilience 
analysis as a complement to risk to prepare infrastructure systems for unforeseen, cascading, and 
complex failures that can cause catastrophic losses (Park et al., 2013; Clark & Seager, 2015).  
Nonetheless, there is disagreement among experts on what resilience means and how to measure 
resilience in engineered infrastructure systems. This paper reviews a sampling of resilience literature 
from a variety of disciplines and identifies at least three dimensions of resilience:  resources, 
processes, and outcome priorities (Seager et al., 2008; Adger, 2009; Mathias et al., 2016; Christensen, 
2012). 
 
The first dimension measures resilience in system resources as material buffers, system 
redundancies, or internal capabilities (Linkov et al., 2013a; Linkov et al., 2013b; Eisenberg et al., 
2014). For example, within an energy distribution system some resilient resources can be the 
inventory of emergency fuel or water stockpiles, number of backup generators, redundant power 
lines, workers, key replacement equipment, energy feedstock, or material composition available 
(Willis & Loa, 2015). Measuring resilience as a system or component property within an 
infrastructure system is one approach to understanding preparedness.  For example, it may be 
important to know how many miles of oil spill containment boom are available to respond to a 
surprise spill in the same way that it is important to know how many life jackets are available on a 
boat.  This dimension dominates the Department of Homeland Security’s National Infrastructure 
Protection Plan (NIPP) (NIPP 2013), and discussions of resilience that rely on dynamic systems 

                                                      
i This paper is part of the IRGC Resource Guide on Resilience, available at: https://www.irgc.org/risk-
governance/resilience/. Please cite like a book chapter including the following information: IRGC (2016). 
Resource Guide on Resilience. Lausanne: EPFL International Risk Governance Center. v29-07-2016 
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modeling (Han 2010), network theory and agent-based modeling (Baggio, 2011), and whole life cycle 
costing (Viavattene, 2012).  
 
Nonetheless, it should be clear that resources alone are useless without a set of processes to deploy 
them effectively.  In the process dimension, resilience is measured in actions, rather than system 
properties (Hollnagel et al., 2011; Park et al., 2013; Seager 2014; Seager 2016). Process-based 
resilience is an emergent behavior of a complex system (Holling, 1996; Rinaldi, 2001; Park et al., 
2013) stemming from cross domain, technical-social-ecological interactions and connections that 
influence adaptive capacity. In this manner, resilience is measured by what the system does, such as 
the way a system senses,  anticipates, adapts, learns, or functions at all times and specifically in 
response to stressors. For example, the observe-orient-decide-act (OODA) loop is utilized by the 
military for rapid risk assessment in a flexible environment (Willi, 2003). The Functional Resonance 
Analysis Method is a methodological approach to understanding the couplings and resonance of 
system functions resulting in emergent behavior (Hollnagel, 2012). Thus, process-based resilience 
emphasizes the capability of people to adapt infrastructure to manage surprise. Additionally, the 
implications of a process-based perspective are not merely technical, they are also ethical (Adger, 
2009). Whereas risk-based decision-making often relegates failure to matters of chance and 
mitigates their consequences by socializing risks (e.g., insurance), adaptive response places 
additional burdens on decision-makers to consider the adverse consequences of failures on different 
impacted populations.  
 
An outcomes-based perspective emphasizes the necessity of understanding competing resilience 
outcome priorities – such as determining when the system has begun to stabilize after an event and 
restore damaged resources (Seager et al, 2007; McDaniels, 2008). A National Institute of Standards 
and Technology funded project outlines resilience through the PEOPLES Framework (Renschler, 
2010). This framework suggests community scale resilience can be evaluated in seven dimensions: 
population and demographics, environmental/ecosystem, organized governmental services, physical 
infrastructure, lifestyle and community competence, economic development, and social-cultural 
capital. These dimensions highlight areas within the technical, social, and ecological systems of 
communities whose functionality can be affected through stressors. Resilience is then characterized 
by measuring the retrospective performance of the infrastructure system from the time of initial loss 
of system functionality to the time it takes for the system to recover. 
 
Although current resilience research often emphasizes one dimension at the expense of others, we 
argue that each of these three perspectives are critical in understanding a system’s resilient response 
to an event.  Unfortunately, the relationships between resources, processes, and outcomes are rarely 
explicit – especially in times of crisis – and the relationship between management intent and 
consequences is clouded by system complexity.  Nonetheless, to achieve resilience policy goals, the 
influences and interactions between multiple resilience perspectives must be examined in greater 
detail.  Comprehensive guidance regarding the types of resources, processes, and priorities that are 
supportive of resilient infrastructure systems, with consideration of ethical principles, for 
safeguarding the public under conditions of component failure must be developed. 
 
 

https://www.youtube.com/watch?v=OxDpLdCBbW4
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