IRGC/OECD/UCL Conference on Planned Adaptive Regulation Panel 2.2 Adaptive Regulation of Precision Medicine 8 January 2016

Technical Developments and Regulatory Challenge Professor Kenneth A. Oye MIT Center for Biomedical Innovation

<u>Outline</u>

Variants on Precision Medicine

- Conventional Therapeutics Paired with Advanced Diagnostics
- Somatic & Germline Gene Therapy, Regenerative Medicine Implications for Evaluation of Safety, Efficacy and Effectiveness
- Smaller treatment groups: large-N RCTs problematic, costs rising
- Conventional: Less heterogeneity of treatment effects
- Genetic Medicine: More complexity and uncertainty (initially) <u>Regulatory Issues: EMA, FDA, PMDA, Health Canada</u>
- Thresholds: Defining Evidentiary Standards and Treatment Groups
- Data Access and Quality: Ownership, Curation and Consent
- Analytics: Observation, Intervention and Causal Inference
- Keeping Commitments to Observe, Validate and Adapt

PRECISION MEDICINE

"Precision medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle . . . " US Precision Medicine Initiative

VERSION 1.0

TARGET <u>CONVENTIONAL DRUGS</u> ON NARROWER TREATMENT GROUPS

- Broad indications splintering into narrower indications
- Treatment groups splintering into smaller target populations
- Companion diagnostic tools and biomarkers key to target

How?

- Enabled by revolutions in genomic science and info technology
- Informed by evolving understanding of mechanisms and pathways
- Use genotypic and phenotypic data, registries, and heath records to develop population specific takes on safety, efficacy and effectiveness and to reduce heterogeneity in treatment effects

To What?

Initial best applications in oncology, expanding to other diseases . . .

VERSION 2.0 CURRENT SOMATIC CELL GENE THERAPY (SCGT) Single gene alterations to cure thalassemia, cystic fibrosis, hemophilia. 300+ SCGT now under development 2015 Bluebird LentiGlobin BB305 for β-thalassaemia at EMA FDA

VERSION 2.5 EMERGING SOMATIC CELL GENE THERAPY (SCGT)

2015 Obesity switch . . . Example of next generation SCGT?

- MIT Kellis lab decoded regulatory circuitry for FTO obesity locus.
- ID path for adipocyte thermogenesis ARID5B, rs1421085, IRX3, IRX5.
- Manipulated genetic switch, with pro-obesity & anti-obesity effects.

ESTABLISHED IN 1812

SEPTEMBER 3, 2015

VOL. 373 NO. 10

FTO Obesity Variant Circuitry and Adipocyte Browning in Humans

Melina Claussnitzer, Ph.D., Simon N. Dankel, Ph.D., Kyoung-Han Kim, Ph.D., Gerald Quon, Ph.D., Wouter Meuleman, Ph.D., Christine Haugen, M.Sc., Viktoria Glunk, M.Sc., Isabel S. Sousa, M.Sc., Jacqueline L. Beaudry, Ph.D., Vijitha Puviindran, B.Sc., Nezar A. Abdennur, M.Sc., Jannel Liu, B.Sc., Per-Arne Svensson, Ph.D., Yi-Hsiang Hsu, Ph.D., Daniel J. Drucker, M.D., Gunnar Mellgren, M.D., Ph.D., Chi-Chung Hui, Ph.D., Hans Hauner, M.D., and Manolis Kellis, Ph.D.

VERSION 3.0 REGENERATIVE MEDICINE

REPLACE

Engineer differentiated tissue/organ Insert/transplant in subject

- Tracheal implants Macchiarrini 2008, 2011
- Retinal Tissue Implant Kurimoto 2011

REGENERATE

Trigger internal healing in subject Insert extracellular matrix, modified stem cells

- * Own cord blood stem cells
- * Donor stem cells, marrow

Procymal for graft-versus-host disease

VERSION 4.0 GERMLINE GENE THERAPY (GGT) SCGT works in individual, GGT changes in germline will be heritable 2015 Huang@Sun Yat-sen U edited β-thalassaemia gene in 28 embryos. Initial experiment failed, with many off target mutations. Note: Efficiency of CRISPR Cas9 enables multiple gene interventions.

nature

Chinese scientists have reported genetically modifying human embryos

bit.ly/editedembryo

IRGC/OECD/UCL Conference on Planned Adaptive Regulation Panel 2.2 Adaptive Regulation of Precision Medicine 8 January 2016

Technical Developments and Regulatory Challenge Professor Kenneth A. Oye MIT Center for Biomedical Innovation

<u>Outline</u>

Variants on Precision Medicine

- Conventional Therapeutics Paired with Advanced Diagnostics
- Somatic & Germline Gene Therapy, Regenerative Medicine Implications for Evaluation of Safety, Efficacy and Effectiveness
- Smaller treatment groups: large-N RCTs problematic, costs rising
- Conventional: Less heterogeneity of treatment effects
- Genetic Medicine: More complexity and uncertainty (initially) <u>Regulatory Issues: EMA, FDA, PMDA, Health Canada</u>
- Thresholds: Defining Evidentiary Standards and Treatment Groups
- Data Access and Quality: Ownership, Curation and Consent
- Analytics: Observation, Intervention and Causal Inference
- Keeping Commitments to Observe, Validate and Adapt

RISK GOVERNANCE AND ECONOMIC ISSUES

LONGSTANDING ISSUES

- Patient demand for earlier access to break through therapeutics
- Confounder cleansed RCT bad predictor of safety/effectiveness
- Patients unnecessarily exposed to risks during early use

EMERGING ISSUES

- Indications splintering into smaller genetically defined sub-groups
- Increasing difficulty finding enough subjects for RCTs
- •Limited competition among sponsors in smaller niches
- Payers demanding more evidence on effectiveness
- Novelty / complexity / uncertainty of gene therapies
- Ethics of human germline modification

OVERAL TREND IN R&D EFFICIENCY (INFLATION ADJUSTED)

Scannell et al, Nature Review Drug Discovery, March 2012.

Prices Climb | The cost of drugs is rising, especially for rare disorders.

A selection of some of the most expensive drugs, annual cost in the U.S.

Drug (company)	Treats	Typical/Annual Cost	Target patient population
Soliris (Alexion)	Type of blood disease and also a kidney disorder	\$440,000	10,000-12,000 world-wide
Naglazyme (BioMarin)	Rare enzyme disorder	\$400,000	1,100 in developed countries
Elaprase (Shire/Sanofi)	Rare enzyme disorder	\$375,000	2,000 world-wide
Cinryze (Shire)	Hereditary Angioedema	\$350,000	6,000 in U.S.
Gattex (NPS)	Short Bowel Syndrome	\$295,000	3,000-5,000 in U.S.
Harvoni (Gilead)	Hepatitis C	\$94,500	3.2 million in U.S.

Source: Sector & Sovereign Research (price changes); Needham & Co. (drugs, patient population); Centers for Disease Control and Prevention (patient population) °Adjusted for inflation The Wall Street Journal

GENE THERAPY: EARLY PROBLEMS, CURRENT CHALLENGES

Public Interest Group Calls for Public Disclosures in Gene Therapy Death

Contact: Osagie Obasogie 510-625-0819, ext 310

Troubling new revelations have emerged this week in the death of an Illinois woman in a gene therapy trial for arthritis, prompting the Center for Genetics and Society to call on the federal government to consider firmer regulatory action.

Early Problems

Trials use inappropriate subjects. Deaths set back research. <u>Current Challenges</u>

Genetically defined treatment groups with target patient pool ranging from n=medium to n=1 Complex lag structure on safety, efficacy and effectiveness

- Hard to do large n randomized trial
- Hard to predict lagged effects

nature

Don't edit the human germ line

Heritable human genetic modifications pose serious risks, and the therapeutic benefits are tenuous, warn Edward Lanphier, Fyodor Urnov and colleagues.

t is thought the use of genomethe DNA of hi published shortly¹. There are grav the ethical and saf research. There is a impact it could ha involving the use o niques in somatic (i

We are all involv work. One of us (EU first genome-editing nucleases² (ZFNs), a at the company dev BioSciences of R The Alliance for F (ARM; in which E. involved), is an inte that represents mor companies, research organizations, patie investors focused of mercializing therap involving genome of

Perspective

A prudent path forward for genomic engineering and germline gene modification

By David Baltimore,¹ Paul Berg,² Michael Botchan,^{3,4} Dana Carroll,⁵ R. Alta Charo,⁶ George Church,⁷ Jacob E. Corn,⁴ George Q. Daley,^{8,9} Jennifer A. Doudna,^{4,10} Marsha Fenner,⁴ Henry T. Greely,¹¹ Martin Jinek,¹² G. Steven Martin,¹³ Edward Penhoet,¹⁴ Jennifer Puck,¹⁵ Samuel H. Sternberg,¹⁶ Jonathan S. Weissman,^{4,17} Keith R. Yamamoto^{4,18}

¹California Institute of Technology, Mail Code 147-75, Pasadena, CA 91125, USA. ²Stanford University School of Medicine,

studies have p information abo changes that in velopment of o past, without the specific and eff tions to a genon act on this infor ited. However, has been upend development a adoption of a s sive, and rema engine genome known as clus interspaced sho ----- (CDIC IRGC/OECD/UCL Conference on Planned Adaptive Regulation Panel 2.2 Adaptive Regulation of Precision Medicines 8 January 2016 Precision Medicine Technical Developments and Regulatory Challenge Professor Kenneth A. Oye Center for Biomedical Innovation Massachusetts Institute of Technology Outline

Variants on Precision Medicine

- Conventional Therapeutics Paired with Advanced Diagnostics
- Emerging Somatic & Germline Gene Therapy, Regenerative Medicine Implications for Evaluation of Safety, Efficacy and Effectiveness
- Smaller treatment groups: large-N RCTs problematic, costs rising
- Conventional: Less heterogeneity of treatment effects
- Emerging: More complexity and uncertainty (initially) Adaptive Regulatory Issues: EMA, FDA, PMDA, Health Canada
- Thresholds: Defining Evidentiary Standards and Treatment Groups
- Data Access and Quality: Ownership, Curation and Consent
- Analytics: Observation, Intervention and Causal Inference
- Keeping Commitments to Observe, Validate and Adapt

STEPS TOWARD ADAPTIVE PATHWAYS

<u>Health Canada</u>

Progressive Licensing Exercise (not approved)2008Parliament enacts safety reform /adaptive licensing 2014European Medicines Agency

Pharmacovigilance legislation2010EFPIA planning IMI project on AL/MAPPs2013EMA/EUnetHTA 3 year post market data plan2013EMA AL Pilots2014

USIOM PCAST AND FDA

PCAST report recommends exploring SMU and AL2013Breakthrough product designation established2012

- 64 requests for designation in year 1, 24 granted 2013
- 2 FDA-CMS parallel review pilot projects 2013

JAPAN PMDA

Conditional limited approval regenerative medicine 2014Forerunner Review Assignment2014

Open

See COMMENTARY page 378

Adaptive Licensing: Taking the Next Step in the Evolution of Drug Approval

H-G Eichler^{1,2}, K Oye^{2,3,4}, LG Baird², E Abadie⁵, J Brown⁶, CL Drum², J Ferguson⁷, S Garner^{8,9}, P Honig¹⁰, M Hukkelhoven¹¹, JCW Lim¹², R Lim¹³, MM Lumpkin¹⁴, G Neil¹⁵, B O'Rourke¹⁶, E Pezalla¹⁷, D Shoda¹⁸, V Seyfert-Margolis¹⁴, EV Sigal¹⁹, J Sobotka²⁰, D Tan¹², TF Unger¹⁸ and G Hirsch²

Traditional drug licensing approaches are based on binary decisions. At the moment of licensing, an experimental therapy is presumptively transformed into a fully vetted, safe, efficacious therapy. By contrast, adaptive licensing (AL) approaches are based on stepwise learning under conditions of acknowledged uncertainty, with iterative phases of data gathering and regulatory evaluation. This approach allows approval to align more closely with patient needs for timely access to new technologies and for data to inform medical decisions. The concept of AL embraces a range of perspectives. Some see AL as an evolutionary step, extending elements that are now in place. Others envision a transformative framework that may require legislative action before implementation. This article summarizes recent AL proposals; discusses how proposals might be translated into practice, with illustrations in different therapeutic areas; and identifies unresolved issues to inform decisions on the design and implementation of AL.

ADAPTIVE LICENSING Patient experience contributes to evidence development

<u>FRONT END – PRE MARKET</u>

Earlier approval Conditional Limit to patients on benefit/risk

BACK END – ON MARKET Strengthen observation

•Registries

•EHRs

Analyze safety and effectiveness Adapt label and license

KEY

Patients in interventional studies Patients treated but unobserved Patients treated and observed

REGULATION OF REGENERATIVE MEDICINE AND CELL THERAPY

- Patients demand access to therapies of last resort
- Less regulated usually under provisions for surgery
- Placebo controlled trials unethical for surgery
- Need more post hoc observation on efficacy, safety, effectiveness
- Therapies need basket license, effects may vary by individual.
- Is Japan PMDA "conditional time limited approval" a fix?

FROM PREDICTION TO OBSERVATION AND MONITORING Credit: Eichler OECD presentation 2014

YearDrug > Adverse Effect1950-60sThalidomide > phocomelia2005Natalizumab > PML2009Pandemrix > narcolepsy

Detection Threshold 10000 cases 3 cases 6 cases

Note: phocomelia Note: MI in diabetics low background / high visibility event high background / low visibility events

WEAK ACCESS TO CLINICAL TRIALS AND OBSERVATIONAL DATA

- Property rights and clinical trials data US and EU differences
- Property rights and observational data
- Consent requirements and public health exemption
- Data standards and protocols and commensurability
- Privacy assurances and data aggregation
- Privacy assurances and cybersecurity issues

WEAK EXISTING POSTMARKETING FOLLOWUP AND CONTROLS 2005 Ed Markey staff study

- 91 required postmarketing studies
- 45% not completed, many not started
- 2013 Moore-Furberg study of 20 drugs approved in 2008
- 8 expedited approval based on average of 5.1 years of clinical testing
- 12 standard approval based on 7.5 years of clinical testing
- 60% of required follow-up safety studies not completed by 2013
- 2013 Carpenter "hodgepodge of exceptions to rigorous premarket review"
- Approval based on testing in limited patient populations
- Use not restricted to limited patient populations

SOME OPPORTUNITIES AND GAPS

- DESIGNING AND REFINING ADAPTIVE LICENSING
- •EMA Adaptive Licensing Pilot Projects
- Simulations using data from previously approved drugs
- Assessing payer based methods of controlling access

POOLING INTERVENTION AND OBSERVATIONAL DATA

- Multinational trials to capture sufficient N
- IPR and licensing of data from registries, payers and EHR
- Privacy regulations and data sharing arrangements
- Cybersecurity and data protection
- Technical protocols and standards for interoperability
- Advanced methods for causal inference with large data
- Confirmation of associations on beneficial or adverse effects
- Going backwards from observation to intervention

POLITICAL ECONOMY

- •Converting data owners (payers, providers, HMO) into developers?
- Drug licensing as pricing policy: creating competitive markets?